Hybrid Planning for Partially Hierarchical Domains
نویسندگان
چکیده
Hierarchical task network and action-based planning approaches have traditionally been studied separately. In many domains, human expertise in the form of hierarchical reduction schemas exists, but is incomplete. In such domains, hybrid approaches that use both HTN and action-based planning techniques are needed. In this paper, we extend our previous work on refinement planning to include hierarchical planning. Specifically, we provide a generalized plan-space refinement that is capable of handling non-primitive actions. The generalization provides a principled way of handling partially hierarchical domains, while preserving systematicity, and respecting the user-intent inherent in the reduction schemas. Our general account also puts into perspective the many surface differences between the HTN and action-based planners, and could support the transfer of progress between HTN and action-based planning approaches.
منابع مشابه
Leveraging Task Knowledge for Robot Motion Planning Under Uncertainty
Noisy observations coupled with nonlinear dynamics pose one of the biggest challenges in robot motion planning. By decomposing the nonlinear dynamics into a discrete set of local dynamics models, hybrid dynamics provide a natural way to model nonlinear dynamics, especially in systems with sudden “jumps” in the dynamics, due to factors such as contacts. We propose a hierarchical POMDP planner th...
متن کاملAutomated Hierarchy Discovery for Planning in Partially Observable Domains
Planning in partially observable domains is a notoriously difficult problem. However, in many real-world scenarios, planning can be simplified by decomposing the task into a hierarchy of smaller planning problems which, can then be solved independently of one another. Several approaches, mainly dealing with fully observable domains, have been proposed to optimize a plan that decomposes accordin...
متن کاملTitle:clipp: Combining Logical Inference and Probabilistic Planning
Planning on mobile robots deployed in complex real-world application domains is a challenge because: (a) robots lack knowledge representation and common sense reasoning capabilities; and (b) observations from sensors are unreliable and actions performed by robots are non-deterministic. In this talk, I shall describe a hybrid framework named CLIPP that combines answer set programming (ASP) and h...
متن کاملExploiting Expert Knowledge in Factored POMDPs
Decision support in real-world applications is often challenging because one has to deal with large and only partially observable domains. In case of full observability, large deterministic domains are successfully tackled by making use of expert knowledge and employing methods like Hierarchical Task Network (HTN) planning. In this paper, we present an approach that transfers the advantages of ...
متن کاملFHHOP: A Factored Hybrid Heuristic Online Planning Algorithm for Large POMDPs
Planning in partially observable Markov decision processes (POMDPs) remains a challenging topic in the artificial intelligence community, in spite of recent impressive progress in approximation techniques. Previous research has indicated that online planning approaches are promising in handling large-scale POMDP domains efficiently as they make decisions “on demand” instead of proactively for t...
متن کامل